About Electronic Medical Records

According to Wikipedia

An electronic health record (EHR), or electronic medical record (EMR), refers to the systematized collection of patient and population electronically-stored health information in a digital format. These records can be shared across different health care settings. Records are shared through network-connected, enterprise-wide information systems or other information networks and exchanges. EHRs may include a range of data, including demographics, medical history, medication and allergies, immunization status, laboratory test results, radiology images, vital signs, personal statistics like age and weight, and billing information.

EHR systems are designed to store data accurately and to capture the state of a patient across time. It eliminates the need to track down a patient’s previous paper medical records and assists in ensuring data is accurate and legible. It can reduce risk of data replication as there is only one modifiable file, which means the file is more likely up to date, and decreases risk of lost paperwork. Due to the digital information being searchable and in a single file, EMR’s are more effective when extracting medical data for the examination of possible trends and long term changes in a patient. Population-based studies of medical records may also be facilitated by the widespread adoption of EHR’s and EMR’s.


The terms EHR, electronic patient record (EPR) and EMR have often been used interchangeably, although differences between the models are now being defined. The electronic health record (EHR) is an evolving concept defined as a more longitudinal collection of the electronic health information of individual patients or populations. (See reference 1.) The EMR is, in contrast, defined as the patient record created by providers for specific encounters in hospitals and ambulatory environments, and which can serve as a data source for an EHR. It is important to note that an “EHR” is generated and maintained within an institution, such as a hospital, integrated delivery network, clinic, or physician office, to give patients, physicians and other health care providers, employers, and payers or insurers access to a patient’s medical records across facilities. (Please note that the term “EMR” would now be used for the preceding description, and that many EMR’s now use cloud software maintenance and data storage rather than local networks.)

In contrast, a personal health record (PHR) is an electronic application for recording personal medical data that the individual patient controls and may make available to health providers.

Comparison with paper-based records[edit]

Federal and state governments, insurance companies and other large medical institutions are heavily promoting the adoption of electronic medical records. The US Congress included a formula of both incentives (up to $44,000 per physician under Medicare, or up to $65,000 over six years under Medicaid) and penalties (i.e. decreased Medicare and Medicaid reimbursements to doctors who fail to use EMRs by 2015, for covered patients) for EMR/EHR adoption versus continued use of paper records as part of the Health Information Technology for Economic and Clinical Health (HITECH) Act, enacted as part of the American Recovery and Reinvestment Act of 2009.

One VA study estimates its electronic medical record system may improve overall efficiency by 6% per year, and the monthly cost of an EMR may (depending on the cost of the EMR) be offset by the cost of only a few “unnecessary” tests or admissions. Jerome Groopman disputed these results, publicly asking “how such dramatic claims of cost-saving and quality improvement could be true”. A 2014 survey of the American College of Physicians member sample, however, found that family practice physicians spent 48 minutes more per day when using EMRs. 90% reported that at least 1 data management function was slower after EMRs were adopted, and 64% reported that note writing took longer. A third (34%) reported that it took longer to find and review medical record data, and 32% reported that it was slower to read other clinicians’ notes.

The increased portability and accessibility of electronic medical records may also increase the ease with which they can be accessed and stolen by unauthorized persons or unscrupulous users versus paper medical records, as acknowledged by the increased security requirements for electronic medical records included in the Health Information and Accessibility Act and by large-scale breaches in confidential records reported by EMR users. Concerns about security contribute to the resistance shown to their widespread adoption.

Handwritten paper medical records may be poorly legible, which can contribute to medical errors. Pre-printed forms, standardization of abbreviations and standards for penmanship were encouraged to improve reliability of paper medical records. Electronic records may help with the standardization of forms, terminology and data input. Digitization of forms facilitates the collection of data for epidemiology and clinical studies.

EMRs can be continuously updated (within certain legal limitations – see below). If the ability to exchange records between different EMR systems were perfected(“interoperability”) would facilitate the co-ordination of health care delivery in non-affiliated health care facilities. In addition, data from an electronic system can be used anonymously for statistical reporting in matters such as quality improvement, resource management and public health communicable disease surveillance.